DARPA Hosting Proposers Day for Muons for Science and Security (MuS2) Program – HS Today – HSToday

DARPA Hosting Proposers Day for Muons for Science and Security (MuS2) Program – HS Today – HSToday

Muons are sensitive to density variation as they penetrate materials, which makes them particularly advantageous for locating voids in solid structures.
The Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) is sponsoring a Proposers Day webcast to provide information to potential proposers on the objectives of an anticipated Broad Agency Announcement (BAA) for the Muons for Science and Security (MuS2) program. The Proposers Day will be held via webcast on August 5, 2022 from 1:00 PM to 2:00 PM. Advance registration is required for viewing the webcast. Note, all times listed in this announcement and on the registration website are Eastern Time.
The goals of the MuS2 Proposers Day are to (1) introduce the research community (Proposers, Academia, and Government) to the MuS2 program vision and goals, (2) explain the mechanics of a DARPA program and the milestones of this particular effort, and (3) encourage and promote teaming arrangements among potential organizations that have the relevant expertise, facilities, and capabilities for executing a research and development program responsive to the MuS2 program goals.
Read more at SAM.gov
The Defense Department and other federal agencies have sought advanced sources that generate gamma rays, X-rays, neutrons, protons, and electrons to enable a variety of scientific, commercial, and defense applications – from medical diagnostics, to scans of cargo containers for dangerous materials, to non-destructive testing of aircraft and their parts to see internal defects. But none of these sources can image through concrete walls several meters thick, map the core of a volcano from the outside, or peer deep underground to locate chambers and tunnels. For such imaging capabilities, a more powerful particle is needed.
DARPA’s Muons for Science & Security program (MuS2 – pronounced Mew-S-2) aims to create a compact source of deeply penetrating subatomic particles known as muons. Muons are similar to electrons but about 200 times heavier. At high energy, muons can travel easily through dozens to hundreds of meters of water, solid rock, or soil. Producing muons, however, is a challenge, because it requires a very high-energy, giga-electronvolt (GeV) particle source. Currently, two primary sources for muons exist. Cosmic ray interactions in the upper atmosphere naturally generate muons as they descend to Earth in created particle showers. Harnessing these muons for imaging is tedious and not very practical. Cosmic muons have played a role in special projects, such as when scientists used them to image interior chambers of the great pyramids in Egypt. Given the small number of muons that reach the Earth’s surface and the divergent paths they travel through the atmosphere, it can take days to months to capture enough muon data to produce meaningful results. Muons can also be generated terrestrially. But making muons requires such high-energy particles that production is limited to large physics research facilities such as the United States’ Fermilab national particle accelerator in Illinois and the European CERN accelerator in Switzerland.
“Our goal is to develop a new, terrestrial muon source that doesn’t require large accelerators and allows us to create directional beams of muons at relevant energies, from 10s to 100s of GeVs – to either image or characterize materials,” said Mark Wrobel, MuS2 program manager in DARPA’s Defense Sciences Office. “Enabling this program is high-peak-power laser technology that has been steadily advancing and can potentially create the conditions for muon production in a compact form factor. MuS2 will lay the ground work needed to examine the feasibility of developing compact and transportable muon sources.”
MuS2 aims to employ what’s called laser plasma acceleration (LPA) to initially create 10 GeV particles in the space of tens of centimeters compared to hundreds of meters needed for state-of-the art linear accelerators. Ultimately, MuS2 seeks to develop scalable and practical processes to produce conditions that can create muons exceeding 100 GeV through innovations in LPA, target design, and compact laser driver technology.
Muons are sensitive to density variation as they penetrate materials, which makes them particularly advantageous for locating voids in solid structures. If MuS2 and any follow-on efforts are successful, whole buildings could be scanned from the outside to characterize internal structures and detect the presence of threat materials such as special nuclear materials. Other potential applications include rapidly mapping the location of underground tunnels and chambers hundreds of meters below the Earth’s surface.
MuS2 is a four-year program divided into two phases. During the 24-month first phase, teams will conduct initial modeling and scaling studies and use experiments to validate models as well as attempt to produce 10 GeV muons. In the second 24-month phase, teams will aim to develop scalable accelerator designs for 100 GeV or greater and produce relevant numbers of muons for practical applications.
Given the strong focus on fundamental research, high-energy physics, and defense applications, MuS2 seeks integrated teams that can holistically investigate practical muon sources. Teams will require expertise in the following areas:
“To address these diverse research areas, we anticipate building integrated teams composed of academia, national laboratories, and defense industries,” Wrobel said.
Read more at DARPA



About the Author

Leave a Reply

error: Konten dilindungi !!
adana eskort - eskişehir eskort - eskort mersin -

taşlı led avize